报告题目: Introduction to Tutte polynomials
报告人: 董峰明 教授
报告时间:2025年6月16日9:30-11:30; 17日9:30-11:30; 18日9:30-11:30
报告地点:日本av无码教东C-209
邀请人:陆由
摘要: The Tutte polynomial is a polynomial in two variables which plays an important role in graph theory. The importance of this polynomial stems from the information it contains about graphs. Its specializations include the chromatic polynomial, flow polynomial, Jones polynomial, Reliability polynomial, etc. It can also be applied to compute many invariables of graphs, such as the number of spanning trees, the number of forests, the number of acyclic orientations, the number of strongly connected orientations, etc.
In the talks, I will introduce the rank function r of graphs, the definition of the Tutte polynomial TG(x, y) in terms of the rank function r, decomposition property of TG(x, y), a recurrence formula for computing TG(x, y), interpretations of its coefficients, relations with some other graph-polynomials, etc.
报告人简介:董峰明,新加坡南洋理工大学教授、博士生导师。 1997 年毕业于新加坡国立大学, 获博士学位。主要研究兴趣为图论,特别是图和拟阵的结构与多项式的关系。和他人合作,已出版专著和其它书籍4本, 发表论文约100篇,其中约70篇发表在JCTA, JCTB, JGT, SIAM DM, EJC, EUJC, CPC, AAM, DM等国际组合数学重要学术刊物上。他解决了若干公开问题和猜想,包括牛津大学的Welsh和Bartel提出的“the Shameful Conjecture”。2008年他被剑桥大学聘为客座研究员,受邀参与牛顿数学研究所的组合数学与统计物理的研究项目。2015年受邀参与《the CRC Handbook on the Tutte Polynomial and Related Topics》手册的撰写工作。他和合作者是该手册中仅有的亚洲地区作者。他的研究兴趣广泛,研究工作主要体现在以下几个方面:图的染色,图的各种多项式,支撑树的计数,匹配的计数,超图,1-平面图,图谱,控制数,anti-ramsey 数等等。